|
Journal of Korean Society for Quality Management 1982;10(2): 2-. |
시스템의 신뢰성(信賴性) 보증방법(保證方法)에 대(對)한 연구(硏究) |
이상용 |
건국대학교 공과대학 산업공학과 |
A Study on the Methods of Systems Reliability Assurance |
Sang-Yong Lee |
|
|
|
|
ABSTRACT |
In principle the methods of increasing the reliability of complex system can be classified into the following four basic methods: (1) using the stand-by redundancy; (2) decreasing the failure rate of the system; (3) decreasing the time of continuous operation; (4) decreasing the mean repair time. Among the above four methods, it is generally known that the method of stand-by redundancy is the most effective general, to increase the reliability of systems. Therefor this paper aims to compare the gain in reliability which is achieved by applying stand-by redundancy with other methods, and to show the characteristics of each method From the comparison of the methods of increasing reliability, the following important facts are found: When the method of stand-by redundancy is used to increase the reliability of complex systems intended for long-term operation, a hight multiplicity of stand-by redundancy is required. Thus an increase of the reliability of complex system by applying stand-by redandancy is realized at the expense of characteristics such as weight, size, cost, increased complexity of operation conditions. And this property restricts its use in systems which are critical with respect to weight, size, cost or operation conditions. The method of stand-by redundancy is the most effective when this method is used to increase the reliability of complex systems intended for short-term operation, and the method of decreasing failure rate is the most effective when it is used to increase the reliability of systems intended for long-term use. The methods of increasing reliability discussed in this paper make it possible to make highly reliable systems. But it is not possible to make a highly reliable system using a single method of increasing reliability, even if it is the most effective one. Therefore it is recommended to use all or a majority of the above four methods by choosing it in accordance with the properties of the system under construction. |
|
|
|